Friday 2 December 2016

Transportation engineering

                                     Transportation engineering


                      Transportation engineering or transport engineering is the application of technology and scientific principles to the planning, functional design, operation and management of facilities for any mode of transportation in order to provide for the safe, efficient, rapid, comfortable, convenient, economical, and environmentally compatible movement of people and goods (transport). It is a sub-discipline of civil engineering.The importance of transportation engineering within the civil engineering profession can be judged by the number of divisions in ASCE (American Society of Civil Engineers) that are directly related to transportation. There are six such divisions (Aerospace; Air Transportation; Highway; Pipeline; Waterway, Port, Coastal and Ocean; and Urban Transportation) representing one-third of the total 18 technical divisions within the ASCE (1987).


                                    The planning aspects of transportation engineering relate to elements of urban planning, and involve technical forecasting decisions and political factors. Technical forecasting of passenger travel usually involves an urban transportation planning model, requiring the estimation of trip generation (how many trips for what purpose), trip distribution (destination choice, where is the traveler going), mode choice (what mode is being taken), and route assignment (which streets or routes are being used). More sophisticated forecasting can include other aspects of traveler decisions, including auto ownership, trip chaining (the decision to link individual trips together in a tour) and the choice of residential or business location (known as land use forecasting). Passenger trips are the focus of transportation engineering because they often represent the peak of demand on any transportation system.


                     

Highway engineering

                 
  • Handle the planning, design, construction, and operation of highways, roads, and other vehicular facilities as well as their related bicycle and pedestrian realms.
  • Estimate the transportation needs of the public and then secure the funding for the project.
  • Analyze locations of high traffic volumes and high collisions for safety and capacity.
  • Use civil engineering principles to improve the transportation system.
  • Utilizes the three design controls which are the drivers, the vehicles, and the roadways themselves.



Tunnel

      
A tunnel may be for foot or vehicular road traffic, for rail traffic, or for a canal. The central portions of a rapid transit network are usually in tunnel. Some tunnels are aqueducts to supply water for consumption or for hydroelectric stations or are sewersUtility tunnels are used for routing steam, chilled water, electrical power or telecommunication cables, as well as connecting buildings for convenient passage of people and equipment.

Rail transport

                        Rail transport is a means of conveyance of passengers and goods on wheeled vehicles running on rails, also known as tracks. It is also commonly referred to as train transport. In contrast to road transport, where vehicles run on a prepared flat surface, rail vehicles (rolling stock) are directionally guided by the tracks on which they run. Tracks usually consist of steel rails, installed on ties (sleepers) and ballast, on which the rolling stock, usually fitted with metal wheels, moves. Other variations are also possible, such as slab track, where the rails are fastened to a concrete foundation resting on a prepared subsurface.

                         Rolling stock in a rail transport system generally encounters lower frictional resistance than road vehicles, so passenger and freight cars (carriages and wagons) can be coupled into longer trains. The operation is carried out by a railway company, providing transport between train stations or freight customer facilities. Power is provided by locomotives which either draw electric power from a railway electrification system or produce their own power, usually by diesel engines. Most tracks are accompanied by a signalling system. Railways are a safe land transport system when compared to other forms of transport. Railway transport is capable of high levels of passenger and cargo utilization and energy efficiency, but is often less flexible and more capital-intensive than road transport, when lower traffic levels are considered.


Water transportation

Water transportation is the intentional movement of water over large distances. Methods of transportation fall into three categories:
Due to its weight, the transportation of water is very energy intensive. Unless it has the assistance of gravity, a canal or long-distance pipeline will need pumping stations at regular intervals. In this regard, the lower friction levels of the canal make it a more economical solution than the pipeline. Water transportation is also very common along rivers and oceans.

Air

fixed-wing aircraft, commonly called airplane, is a heavier-than-air craft where movement of the air in relation to the wings is used to generate lift. The term is used to distinguish this from rotary-wing aircraft, where the movement of the lift surfaces relative to the air generates lift. A gyroplane is both fixed-wing and rotary-wing. Fixed-wing aircraft range from small trainers and recreational aircraft to large airliners and military cargo aircraft.
Two things necessary for aircraft are air flow over the wings for lift and an area for landing. The majority of aircraft also need an airportwith the infrastructure to receive maintenance, restocking, refueling and for the loading and unloading of crew, cargo and passengers. While the vast majority of aircraft land and take off on land, some are capable of take off and landing on ice, snow and calm water.

The aircraft is the second fastest method of transport, after the rocket. Commercial jets can reach up to 955 kilometres per hour (593 mph), single-engine aircraft 555 kilometres per hour (345 mph). Aviation is able to quickly transport people and limited amounts of cargo over longer distances, but incur high costs and energy use; for short distances or in inaccessible places helicopters can be used.As of April 28, 2009 The Guardian article notes that, "the WHO estimates that up to 500,000 people are on planes at any time.

No comments:

Post a Comment